
SMF analysis using
Apache Spark and Jupyterlab

April 10th 2024 – GSE z/OS Expertenforum
Marcel Schmidt

In tro d u c t io n
In fra s t ru c tu re o ve rv iew

C om p on en t d e sc r ip t io n

B u ild in g th e in fra s tru c tu re
W SL W in d ow s S u b sy s tem fo r L in u x- ()
A p a ch e S p a rk-
Ju p y te r la b-
Po s tg re SQ L-
N v id ia C U DA C om pu te u n if ie d d e v ic e- (

A rch ite c tu re)
Te s la T a cc e le ra to r c a rd- 4

D em o

Agenda

● It is possible to analyze SMF data using an assembly of open
source technologies
● The necessary infrastructure can be built on a Windows or Unix
pla orm
● The SMF records must be transformed and made available on
the analysis pla orm either as JSON or CSV files or PostgreSQL
records
● There are commercial solu ons available that are combining
these open source tools with proprietary code to directly access
SMF data residing on z/OS

Introduction

Infrastructure
Overview

Infrastructure overview

Component
description

● Windows Subsystem for Linux V2
Allows you to run a Linux environment on a Windows machine
without the need for a separate virtualiza on solu on.

Component description WSL - 2

● Unified analy cs engine for large-scale dataprocessing.
Aka “Big Data” and “Hadoop”

● Spark Core provides distributed task dispatching, scheduling, and basic
I/O func onali es, exposed through an API for Java, Python, Scala, .NET
and R
● Spark SQL is Apache Sparks module for working with structured data
that is abstracted as «data frames»
● A Data frame is a two-dimensional data structure, i.e., data is aligned in
a tabular fashion in rows and columns.
Pandas DataFrame consists of three principal components,
the data, rows, and columns.

Component description Apache Spark –

● Uniform data access - Connect to any data source the same
way.
● DataFrames and SQL provide a common way to access a variety
of data sources, including Hive, Avro, Parquet, ORC, JSON, and
JDBC. You can even join data across these sources.
● Example:
spark.read.json("s3n://…")
.registerTempTable("json")
results = spark.sql("""SELECT * FROM people JOIN json ...""")

Component description Apache Spark – (2)

● web-based interac ve development environment for
notebooks, code, and data.
● Its flexible interface allows users to configure and arrange
workflows in data science, scien fic compu ng, computa onal
journalism, and machine learning.
● The JupyterLab environments provide a produc vity-focused
redesign of Jupyter Notebook. It introduces tools such as a built-
in HTML viewer and CSV viewer along with features that unify
several discrete features of Jupyter Notebooks onto the same
screen.

Component description Jupyterlab –

PostgreSQL is a powerful, open source object-rela onal database system
with over 35 years of ac ve development that has earned it a strong
reputa on for reliability, feature robustness, and performance.

There is a wealth of informa on to be found describing how to install
and use PostgreSQL through the official documenta on.

Component description PostgreSQL –

Component description RAPIDS Accelerator –

RAPIDS Accelerator for Apache Spark Release v21.10 | NVIDIA Technical Blog

CUDA® is a parallel compu ng pla orm and programming model
developed by NVIDIA for general compu ng on graphical processing
units (GPUs). With CUDA, developers are able to drama cally speed
up compu ng applica ons by harnessing the power of GPUs.

In GPU-accelerated applica ons, the sequen al part of the workload
runs on the CPU – which is op mized for single-threaded
performance – while the compute intensive por on of the
applica on runs on thousands of GPU cores in parallel.

Component description Nvidia CUDA –

The Tesla T4 is a professional graphics card by NVIDIA. Built on the 12 nm
process, and based on the TU104 graphics processor, the card supports DirectX
12 Ul mate.
● It features 2560 shading units, 160 texture mapping units, and 64 ROPs.
Also included are 320 tensor cores which help improve the speed of machine
learning applica ons.
● NVIDIA has paired 16 GB GDDR6 memory with the Tesla T4, which are
connected using a 256-bit memory interface. The GPU is opera ng at a
frequency of 585 MHz, which can be boosted up to 1590 MHz,
memory is running at 1250 MHz (10 Gbps effec ve).
● It does not require any addi onal power connector,
its power draw is rated at 70 W maximum.

Component description Tesla T Hardware – 4

Building the
infrastructure

WSL Ubuntu distribution2 /

1. Ensure that your WSL version is 0.67.6 or newer.
 Systemd support is required!
 To check, run wsl --version.
 To update, run wsl --update or download from MS Store
2. wsl --install
3. reboot Windows
4. wsl --install Ubuntu
5. wsl --list --verbose
 NAME STATE VERSION
* Ubuntu Running 2
5. wsl
6. sudo apt update; sudo apt upgrade
7. sudo apt install wget tar net-tools mc -y

Apache Spark (1)

1. Install Java runtime
 Apache Spark requires Java to run
 sudo apt install curl mlocate default-jdk -y

2. Download Apache Spark
Download the latest release of Apache Spark from the downloads page.
https://spark.apache.org/downloads.html

VER=3.5.1 (23. Feb. 2024)
wget https://dlcdn.apache.org/spark/spark-$VER/spark-$VER-bin-
hadoop3.tgz
tar xvf spark-$VER-bin-hadoop3.tgz

Move the Spark folder created after extraction to the /opt/ directory.
sudo mv spark-$VER-bin-hadoop3/ /opt/spark

Apache Spark (2)

Set Spark environment
Open your bashrc configuration file.
nano ~/.bashrc
add:
export SPARK_HOME=/opt/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

Activate changes:
source ~/.bashrc

Apache Spark (3)

3. Start a standalone master Server:
start-master.sh
starting org.apache.spark.deploy.master.Master, logging to
/opt/spark/logs/spark-root-org.apache.spark.deploy.master.Master-1-
EMA.out

The process will be listening on TCP port 8080.
sudo ss -tunelp | grep 8080
tcp LISTEN 0 1 *:8080 *:* users:
(("java",pid=5437,fd=286)) ino:61662 sk:6 cgroup:/ v6only:0 <->

http://localhost:8080/

My Spark URL is spark://EMA:7077

Apache Spark (4)

4. Starting Spark Worker Process
The start-worker.sh command is used to start Spark Worker Process.

start-worker.sh spark://EMA:7077

Jupyterlab (1)

pre-requisites

sudo apt install python3 python3-pip python3-venv nodejs -y
python3 --version
Python 3.10.12

pip3 --version
pip 22.0.2 from /usr/lib/python3/dist-packages/pip (python 3.10)

Jupyterlab (2)

add user and group

run the following commands to create a new user called jupyteruser and grant sudo permission

Add a new group
sudo groupadd jupyter
Creating jupyteruser and adding to the jupyter group
sudo useradd --groups jupyter jupyteruser
sudo passwd jupyteruser

add jupyteruser to the sudo group
sudo adduser jupyteruser sudo

sudo chown jupyteruser:jupyter /home/jupyteruser
sudo mkdir /home/jupyteruser
su - jupyteruser

Jupyterlab (3)

python3 -m pip install --user --upgrade pip
python3 -m pip install --user psycopg2-binary bokeh plotly chart_studio numpy scipy
python-dotenv
python3 -m pip install --user jupyterlab
python3 -m pip install --user pyspark
python3 -m pip install --user matplotlib seaborn

install scala kernel

pip install spylon-kernel
sudo python3 -m spylon-kernel install

Jupyterlab (4)

https (tls) setup

mkdir ~/ssl_cert && cd ~/ssl_cert
Generate a new private key.
openssl genrsa -out jupyter.key 2048
Create a signed certificate.
openssl req -new -key jupyter.key -out jupyter.csr
Create a self-signed certificate
openssl x509 -req -days 365 -in jupyter.csr -signkey jupyter.key -out jupyter.pem
Certificate request self-signature ok
subject=C = CH, ST = Thurgau, L = Ettenhausen, O = MMS IT GmbH

Jupyterlab (5)

Password protect your JupyterLab server by generating and modifying a Jupyter config file:

jupyter server --generate-config
Writing default config to: /home/jupyteruser/.jupyter/jupyter_server_config.py
jupyter server Password
[JupyterPasswordApp] Wrote hashed password to
/home/jupyteruser/.jupyter/jupyter_server_config.json

Find the config file open it because there are changes required for SSL
nano ~/.jupyter/jupyter_server_config.py
If using the SSL certificate, also add the location of the certificate file and the private key to the
config file.

c.ServerApp.certfile = '/home/jupyteruser/ssl_cert/jupyter.pem'
c.ServerApp.keyfile = '/home/jupyteruser/ssl_cert/jupyter.key'

mkdir /home/jupyteruser/notebooks
jupyter-lab --no-browser --ip "*" --notebook-dir=/home/jupyteruser/notebooks --port=8888

Jupyterlab (6)

systemd Setup

sudo nano /etc/systemd/system/jupyter.service
add the following lines:

[Unit]
Description=Jupyter Notebook

[Service]
Type=simple
PIDFile=/run/jupyter.pid
If you need environment variables for Tensorflow GPU work, .bashrc usually does the job
you need to somehow make those available to the Jupyter service, or else Notebooks that need
the GPU won't be able to see it.
Environment="PATH=/usr/local/cuda-12.3/bin:$PATH"
Environment="LD_LIBRARY_PATH=/usr/local/cuda-12.3/lib64:/usr/local/cuda-12.3/lib64:usr/
local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH"
Environment="CUDA_HOME=/usr/local/cuda-12.3"

Jupyterlab (7)

Environment="PYSPARK_ALLOW_INSECURE_GATEWAY=1"

Environment="CLASSPATH=/home/jupyteruser/postgresql-42.5.0.jar:$CLASSPATH"

ExecStart=/home/jupyteruser/.local/bin/jupyter-lab --notebook-dir=/home/jupyteruser/notebooks --
no-browser --ip "*" --port=8888
User=jupyteruser
Group=jupyter
Restart=always
RestartSec=10

[Install]
WantedBy=multi-user.target

Jupyterlab (8)

sudo systemctl enable jupyter
Created symlink /etc/systemd/system/multi-user.target.wants/jupyter.service →
/etc/systemd/system/jupyter.service.

Reload the systemd daemon and restart the service

sudo systemctl daemon-reload
sudo systemctl restart jupyter
sudo systemctl status jupyter

jupyter.service - Jupyter Notebook
 Loaded: loaded (/etc/systemd/system/jupyter.service; enabled; vendor preset: enabled)
 Active: active (running) since Sun 2024-04-07 14:03:11 CEST; 27ms ago
 Main PID: 7507 (jupyter-lab)
 Tasks: 1 (limit: 4589)
 Memory: 2.8M
 CGroup: /system.slice/jupyter.service
 └─7507 /usr/bin/python3 /home/jupyteruser/.local/bin/jupyter-lab
--notebook-dir=/home/jupyteruser/notebook>

Apr 07 14:03:11 EMA systemd[1]: Started Jupyter Notebook.

Jupyterlab (9)

Finally, you can monitor the output of the service:
To show the log messages since the last boot (-b) and without additional fields like timestamp and
hostname (-o cat), type:

sudo journalctl -u jupyter -b -o cat -f

Open a browser window on your local computer and enter the following to open the notebook.

https://[External IP]:8888

PostgreSQL (1)

apt install postgresql libpostgresql-jdbc-java
systemctl start postgresql
systemctl enable postgresql
systemctl Status PostgreSQL

You will need a JDBC connection to connect Apache Spark to your PostgreSQL
database. It’s available for download here:
cd /home/jupyteruser
wget https://jdbc.postgresql.org/download/postgresql-42.7.3.jar
chown jupyteruser:jupyter postgresql-42.7.3.jar

Nvidia CUDA (1)

disable "nouveau" driver because it tries to activate the Tesla card as a
graphics card which doesn’t work because it has no graphics port.

In /etc/default/grub, add the following phrase to the value of
GRUB_CMDLINE_LINUX:
module_blacklist=nouveau

Create /etc/modprobe.d/nouveau.conf and add the following line:
blacklist nouveau

Rebuild modules:
depmod -a

Rebuild your grub config:
grub2-mkconfig --output=/boot/efi/EFI/rocky/grub.cfg

Nvidia CUDA (2)

Download and install the Nvidia Tesla driver

wget https://us.download.nvidia.com/tesla/525.60.13/NVIDIA-Linux-
x86_64-525.60.13.run
chmod +x *.run
Execute the downloaded package in the Shell
./NVIDIA-xxx --kernel-source-path=/usr/src/kernels/xxx

Nvidia CUDA (3)

nvidia-smi
Sat Dec 17 14:03:36 2022
+---+
| NVIDIA-SMI 525.60.13 Driver Version: 525.60.13 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla T4 Off	00000000:01:00.0 Off	0
N/A 93C P0 41W / 70W	2MiB / 15360MiB	8% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Nvidia CUDA CUDA Toolkit (4) –

wget https://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installers/
cuda_10.1.243_418.87.00_linux.run
sh cuda_10.1.243_418.87.00_linux.run --override (--override required to bypass gcc version check)
unselect the driver. install the rest

===========
= Summary =
===========

Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-10.1/
Samples: Installed in /root/, but missing recommended libraries

Please make sure that
 - PATH includes /usr/local/cuda-10.1/bin
 - LD_LIBRARY_PATH includes /usr/local/cuda-10.1/lib64, or, add /usr/local/cuda-10.1/lib64 to
/etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-10.1/bin

Demo

Install the demo assets

Download
SMF110_Spark_Python3.ipynb
SMF110_data.json.zip

From

https://github.com/IzODA/examples/tree/master/SMF

and put them into /home/jupyteruser/Notebooks

Demo (1)

Demo (2)

Demo (3)

Demo (4)

Demo (5)

Demo (6)

Demo (7)

Demo (8)

10.04.2024

