Crypto Key Management

Eysha S. Powers Enterprise Cryptography

IBM Client Center Montpellier - September 19-22, 2017

IBM Systems

What is cryptography?

Cryptography is defined as the practice and study of techniques for secure communication in the presence of third parties (i.e. adversaries).

- Confidentiality Preventing the disclosure of information to unauthorized individuals.
 - Encrypt: Convert clear text to cipher text
 - Decrypt: Convert cipher text to clear text
- Integrity Maintaining and assuring the accuracy and consistency of data.
 - Hash: Translate clear text to a fixed length hash value

Example (32-byte hash):

1025 4AD0 04D2 C7D5 77EA ADA0 E4C8 B76F A290 2F7C D03B F03E B527 A045 E200 238F

- Sign: Hash the clear text and encrypt the hash with a private key
- Verify: Hash the clear text then decrypt the sender's hash using the sender's public key and compare the hash values
- Authentication Verifying the identity of a party.
- Non-repudiation Assuring that a party cannot deny the authenticity of a message.

What are cryptographic keys?

A sequence of bits of a precise length (i.e. key size) intended for use in a cryptographic operation.

- DES = 56 bits (i.e. 8 bytes)
- TDES = 56, 112, or 168 bits (i.e. 8, 16 or 24 bytes)
- AES = 128, 192, or 256 bits (i.e. 16, 24 or 32 bytes)

Where do the bytes come from?

- Typically, a pseudo random number generator
- Pseudo Random number generation requires:
 - An entropy source of randomness PLUS
 - A deterministic mathematical algorithm to
 - Produce pseudo random bytes

Why does the key length matter?

- Short key lengths can be brute force attacked, especially with today's computing speeds
 - The NIST standards body recommends symmetric keys of 16 bytes or larger.
- Long key lengths take much more time to generate
 - RSA key pairs can be 1024 4096 bits (128 512 bytes)
 - ECC key pairs offer stronger encryption but smaller key sizes

IBM Client Center Montpellier - September 19-22, 2017

Tip: Invoke /dev/random for random number generation from the z/OS Unix System Services shell.

How are key values used for encryption and decryption?

- Provide a key value and clear text to a cryptography algorithm to produce cipher text (i.e. encryption)
- Provide a key value and cipher text to a cryptography algorithm to produce clear text (i.e. decryption)

For symmetric encryption, the encryption key and decryption key are the same!

The Anatomy of a Fixed-Length Key Token

Internal AES fixed-length CCA key token (64 bytes)

Bytes	Description	
0	X'01' flag indicating an internal key token	
1 - 3	X'000000' for ICSF	
4	Key token version number (X'04')	
5	Reserved – must be set to X'00'	
6	Flag byte	
7	1-byte Longitudinal Redundancy Check (LRC) checksum of a clear key value	
8 - 15	Master key verification pattern (MKVP)	
16 - 47	Key value, if present	
48 - 55	8-byte control vector (For a clear AES key token this value will be hex zeroes.)	
56 - 57	2-byte integer specifying the length in bits of the clear key value	
58 - 59	2-byte integer specifying the length in bytes of the encrypted key value.	
60 - 63	Token validation value (TVV)	

AES = Advanced Encryption Standard

5

CCA = Common Cryptographic Architecture

AES key values may be 16, 24 or 32 bytes.

See the Cryptographic Services Integrated Cryptographic Service Facility Application Programmer's Guide for additional details

What happens when a key value is exposed or compromised?

If the key value was in the clear

 The key value can be used to decrypt sensitive data

If the key value was encrypted

 The key value cannot be used to decrypt sensitive data without the associated key encrypting key (KEK)

What are key encrypting keys (KEKs)?

KEKs are keys that encrypt (i.e. wrap) other keys

M de

M re

Μ

<u>se</u>

M

pe

Al ar

m

Master Keys	Operat	tional Keys
aster keys are used only to encipher and cipher keys. aster keys are stored in secure, tamper	Operational keys are used in various cryptographic operations (e.g. encryption). Operational keys are stored in a key store (e.g. data set, file, database).	
aster key encrypted keys are known as	Symmetric KEKs	Asymmetric KEKs
aster keys should be changed riodically.	Encrypt symmetric keys with another symmetric key.	Encrypt symmetric keys with RSA public keys Use ECC key pairs to derive a symmetric key. Use the derived symmetric key to encrypt another
master keys are optional. Secure keys e only supported when their associated aster key is active.		symmetric key.

Understanding Clear, Secure, and Protected Keys

Using secure keys ensures that key values stored in the ICSF Key Data Sets are protected with encryption.

Only protected keys created from secure keys should be used for Pervasive Encryption.

Key values are encrypted under a Master Key. Crypto operations are performed only on a Crypto Express adapter 8

Clear Key

How do you generate, maintain and manage Master Keys?

Using the Trusted Key Entry (TKE) Workstation

- Applicable for initialization of ICSF Key Data Sets
- (i.e. key stores) and Crypto Express adapters
- Applicable for master key change operations
- Separate, priced product

Trusted Key Entry (TKE) Workstation

Using the Pass Phrase Initialization (PPINIT) Panel

- Applicable for initialization of ICSF Key Data Sets
- (i.e. key stores) and Crypto Express adapters
- **NOT** applicable for master key change operations
- Included with z/OS and ICSF
- Using the ICSF Master Key Entry Panels

- Applicable for initialization of ICSF Key Data Sets (i.e. key stores) and Crypto Express adapters
- Applicable for master key change operations
- Included with z/OS and ICSF

IMMAND ===>	FRDS INICIALI	More: +	
inter your pass phrase (16 to 64 characters ===>			
elect one of the initialization actions th	en press ENTE	ER to process.	
_ Initialize system - Load the AES, DES, E coprocessors and initialize the CKDS and data sets.	CC, and RSA m PKDS, making	naster keys to all g them the active key	
KDSR format? (Y/N) ===> Y	COMMAND ===:	ICSF	- Master Key Entry
CKDS ===> PKDS ===>		AES new master key DES new master key	register : EMPTY register : EMPTY
Reinitialize system - Load the AES, DES, coprocessors and make the specified CKDS		ECC new master key RSA new master key	register : EMPTY register : EMPTY
sets. CKDS ===>	Specify info	ormation below	
sets. CKDS ===>	Кеу Туре	===> AES-MK	(AES-MK, DES-MK, ECC-MK, RSA-MK)
	Part	===> FIRST	(RESET, FIRST, MIDDLE, FINAL)
	Checksum	===> 42	
	Key Value	===> 24BF3F412727DA29 ===> 17DF1B161A04E7B9 ===> 10AD680264CA6866 ===> 583835BFA1288930	(AES-MK, ECC-MK, and RSA-MK only) (AES-MK, ECC-MK only)
	Press ENTER	to process.	
	C EWIED		

Special Considerations for Master Keys

10

- Master Keys are high value keys that must be protected.
 - Loading Master Keys on a panel means that the key is viewable to passersby!
 - The most secure way to load a Master Key is to use the TKE Workstation with smart cards.
 - The P11 Master Key may ONLY be loaded using a TKE Workstation.
- If you plan to use the PPINIT or the Master Key Entry panels to manage Master Keys, consider how you
 would save the key material for future re-entry (e.g. new Crypto Express adapter, disaster recovery).
- For disaster recovery, the same Master Keys must be loaded onto the backup system.

Option	Details	Pros	Cons
Print Screen	Use a Print Screen key or tool to capture the screen	Sensitive material can be immediately printed and stored in envelopes in a locked safe. No need to save on a local machine or USB stick.	Cannot use copy / paste to re- enter key material
Removable Storage Media	Copy and paste key material to a text file that is saved on a secure storage device (e.g. USB stick).	Easy to copy / paste the key material to the panels for re-entry.	The key material is only as secure as the storage media.
Other Ideas?			

How does ICSF generate, maintain and manage operational keys?

- ICSF provides callable services and utilities to generate and store operational keys into ICSF Key Data Sets (KDS)
- Each KDS is a VSAM data set for persistent objects (e.g. keys, certificates) with programming interfaces for object management.
- Each record in the KDS contains the object and other information about that object.

ICSF uses keys in cryptographic functions to

- Protect data
- Protect other keys
- Verify that messages were not altered
- Generate, protect and verify PINs
- Distribute keys
- Generate and verify signatures

Understanding Key Labels

Every record in the CKDS has an associated key label.

When user applications or z/OS components invoke ICSF callable services (i.e. APIs), the application can specify a key label as a parameter to identify the key for the callable service to use.

System Authorization Facility (SAF) policies control which users can use which keys (and callable services).

- The CSFKEYS class controls access to cryptographic keys in the ICSF CKDS and PKDS and enables/disables the use of protected key.
- The CSFSERV class controls access to ICSF callable services and ICSF TSO panel utilities.

Policy-Based Dataset Encryption Example:

Key Label Naming Conventions & Access Control

The CSFKEYS SAF class controls access to cryptographic keys in the ICSF Key Data Sets (CKDS and PKDS) and enables/disables the use of protected keys.

With RACF-based SAF protection, CSFKEYS resources can be defined as discrete or generic (i.e. wildcard) profiles. As a result, *KDS key label naming conventions are important*.

A key label can consist of up to 64 characters. The first character must be alphabetic or a national character (#, \$, @). The remaining characters can be alphanumeric, a national character (#, \$, @), or a period (.).

Naming considerations:

- the LPAR associated with the key
- the type of data being encrypted
- the owner associated with the key
- the date the key was created
- the application intended to use the key
- The generic profile to protect the key
- A sequence number for the key

Policy-Based Dataset Encryption Example:

Key Label:

DATASET.<dataset_resource>.ENCRKEY.<seqno>

CSFKEYS Profile:

RDEFINE CSFKEYS DATASET. <dataset_resource>.ENCRKEY.* UACC(NONE)

Note: <dataset_resource> would be replaced with the DATASET resource and <seqno> would be replaced with a sequence number.

Additional Metadata

The metadata section of the Common Record Format KDS can be used to store up to 500 bytes of custom installation data.

The Key Dataset Metadata Write (CSFKDMW) and Key Dataset Metadata Read (CSFKDMR) callable services can be invoked to read and write metadata.

Example Metadata:

- Key owner's name
- Key owner's email address
- Reference to data being encrypted (e.g. dataset name)
- Comments about the key and/or data encrypted by the key

Samples for using CSFKDMW and CSFKDMR are available on the IBM Crypto Education Community... <u>https://ibm.biz/BdjcFx</u>

Metadata support requires ICSF HCR77B0 or later and a Common Record Format KDS

IBM Client Center Montpellier - September 19-22, 2017

Offset	Number of Bytes	Field Name
0	72	Key label or handle
72	8	Reserved
80	1	Version
81	1	KDS type (CKDS, PKDS, TKDS)
82	2	Flags
84	4	Record length
88	8	Creation date
96	8	Creation time
104	8	Last update date
112	8	Last update time
120	4	Key material length
124	4	Key material offset
128	4	Metadata length
132	4	Metadata offset
136	4	Reserved

15

What is the relationship between a key record, a key token and a key value?

Key Record

Offset	Number of Bytes	Field Name	Ξ
0	72	Key label or handle	
72	8	Reserved	
80	1	Version	
81	1	KDS type (CKDS, PKDS, TKDS)	
82	2	Flags	
84	4	Record length	
88	8	Creation date] /
96	8	Creation time] /
104	8	Last update date]/
112	8	Last update time	ľ
120	4	Key material length])
124	4	Key material offset	
128	4	Metadata length	
132	4	Metadata offset	
136	4	Reserved	

Key Token

The **key record** contains a **key token** which contains a **key value**.

How do you create a Common Record Format KDS?

Step 1:

Allocate new Key Data Sets.

- CKDS: SYS1.SAMPLIB(CSFCKDS3)
- **PKDS:** No change to allocation process
- TKDS: SYS1.SAMPLIB(CSFTKD2)

See the next slide for CKDS allocation considerations.

Step 2:

A: If there are **no existing keys** to convert then

Initialize new Key Data Sets using the ICSF panels (all KDS types) or JCL job (TKDS)

B: If there are **existing keys** to convert to the new format

 Run the KDS Conversion utility from the ICSF KDS Management panels (for each KDS type to be converted)

CKDS Allocation Considerations

The amount of primary space required for the CKDS depends on the number of keys the dataset will initially contain.

Primary Space = initial key count * record size

For example:

- Initial load of 10K keys, all fixed length tokens.
- Primary Space = 10K * 744 = approx. 7.3 MB

The maximum record size of a DATA key = 140-byte header + 40-byte fixed metadata section + 64-byte key token + 500-byte variable metadata section = 744 bytes

The amount of secondary space depends on how many keys will be added.

Secondary Space = future key count * record size

For example, 83K keys added every year for 10 years = 830K keys

Secondary Space = 830K * 744 = approx. 603 MB

How do you view the contents of a Key Data Set?

With HCR77C1, ICSF supports a CKDS Browser (ICSF Panel Option 5.5).

Note: Alternative methods include IDCAMS REPRO, PKCS #11 Token (TKDS) Browser and the Key Dataset List (CSFKDSL) callable service.

		ICSF -	CKDS KEYS		
Active CKDS:	EYSHA.ICSF.CS	F77C1.CKDSR			Keys: 1184
Enter the num 1 List and 2 List and	ber of the de I manage all r I manage recor	sired option ecords ds with labe	l key type		leave blank for list see heln
3 List and 4 List and 5 Display 6 Delete a 7 Generate	manage recor manage recor the key attri record = AES DATA key	ds that are ds that cont butes and re s	(A ain unsupport cord metadata	CTIVE, INA ed CCA key: for a rec	CTIVE, ARCHIVED) s ord
Full or parti ==> <u>DATASET</u> The label m	Full or partial record label ==> <u>DATASET.*</u> The label may contain up to seven wild cards (*)				
Number of lab	els to displa	y ==> 100 (Ma×imum 100)		
Press ENTER t OPTION ===>	o go to the s	elected opti	on.		
F1=HELP F7=UP	F2=SPLIT F8=DOWN	F3=END F9=SWAP	F4=RETURN F10=LEFT	F5=RFIND F11=RIGHT	F6=RCHANGE F12=RETRIEVE
Press ENTER t OPTION ===> F1=HELP F7=UP	o go to the s F2=SPLIT F8=DOWN	elected opti F3=END F9=SWAP	on. F4=RETURN F10=LEFT	F5=RFIND F11=RIGHT	F6=RCHANGE F12=RETRIEVE

COMMAND ===>		ICSF - CK	DS KEYS List	S	Row 1 to 5 of 5 CROLL ===> <mark>CSR</mark>
Active CKDS:	EYSHA.ICSF.CS	F77C1.CKDSR		k	leys: 1184
Action charac Status charac	ters: A, D, K ters: - Activ	, M, P, R S e A Archiv	ee the help p ed I Inacti	anel for det ve	ails.
Select the re When the list Press END to	cords to be p is incomplet return to the	rocessed and e and you wa previous me	press ENTER nt to see mor nu	e labels, pr	ess ENTER
A S Label	Displaying 1	to 5	of 5		Key Type
 DATASET.A DATASET.H DATASET.P DATASET.S DATASET.X ************************************	BC.123.ENCRKE LQ.MLQ.LLQ.EN RIME.1357.ENC ECRET.1123581 YZ.789.ENCRKE *********	Y.000000001 CRKEY.0000000 RKEY.0000000 3.ENCRKEY.00 Y.00000001 ***** Bottom	01 1 000001 of data ****	*****	DATA DATA DATA DATA DATA DATA
F1=HELP F7=UP	F2=SPLIT F8=DOWN	F3=END F9=SWAP	F4=RETURN F10=LEFT	F5=RFIND F11=RIGHT	F6=RCHANGE F12=RETRIEVE
F1=НЕ∟Р F7=∪Р	F2=SPLIT F8=DOWM	F3=END F9=SWAP	F4=RETURN F10=LEFT	F5=RFIND F11=RIGHT	F6=RCHANGE F12=RETRIEVE

Additional z/OS Key Stores

RACF provides the RACDCERT GENCERT command to generate and store keys into the RACF database and ICSF Key Data Sets (PKDS and TKDS). RACF also provides the RACDCERT CONNECT command to add certificates to RACF Keyrings.

SystemSSL provides the gskkyman utility to generate and store certificates into key database files. SystemSSL can also read from RACF Keyrings and generate and store certificates into PKCS#11 Tokens (TKDS).

JCE provides APIs and utilities to generate and store keys and certificates into ICSF Key Data Sets, RACF Keyrings, and Java Key Stores.

Key Life Cycle (Simple View)

IBM Client Center Montpellier - September 19-22, 2017

21

Locating Key Life Cycle Metadata in KDS Records

Тад	Meaning
X'0001'	Variable metadata block
X'0002'	Record create date
X'0003'	Record update date
X'0004'	Key material validity start date
X'0005'	Key material validity end date
X'0006'	Last reference date (YYYYMMDD)
X'0007'	Last reference date (first 8 bytes of the value returned by store clock extended instruction)
X'0008'	Record archive date
X'0009'	Record archive flag
X'000A'	Record prohibit archive flag
X'000B'	Record recall date

	Tag	Meaning
	X'0001'	Installation user data
	X'0002'	Service for reference
	X'0003'	Record archive date
	X'0004'	Record recall date
	X'0005'	Key fingerprint
	X'0006'	Retained key information
\backslash	X'8000' - X'FFFF'	Installation metadata

Remember...

Metadata support requires ICSF HCR77B0 or later and a Common Record Format Key Data Set

Key Dataset Metadata Write (CSFKDMW) and Key Dataset Metadata Read (CSFKDMR) callable services can be invoked to read and write metadata.

IBM

IBM Client Center Montpellier - September 19-22, 2017

22

Is there a way to audit key life cycle transitions?

B

Key life cycle auditing must be explicitly enabled in the ICSF Installation Options Data Set (IODS) or the SETICSF OPT operator commands.

ICSF IODS Option	SMF Record Type
AUDITKEYLIFECKDS(TOKEN(YES),LABEL(YES))	Type 82 Subtype 40
AUDITKEYLIFEPKDS(TOKEN(YES),LABEL(YES))	Type 82 Subtype 41
AUDITKEYLIFETKDS(TOKENOBJ(YES),SESSIONOBJ(YES))	Type 82 Subtype 42
	Let's take a look!
Client Center Montpellier - September 19-22, 201	17

SMF Record Type 82 Subtype 40

CCA Symmetric Key Lifecycle Event

Тад	Name	Description
X'0100'	KEY_EVENT	Key event.
X'0101'	KDS_LABEL	The label in the KDS
X'0102'	KDS_DSNAME	The data set name of the KDS associated with the event.
X'0103'	KEY_NAME	The key name from the token. Applies to variable-length CCA tokens only.
X'0105'	KEY_FPRINT	One or more key fingerprints.
X'0106'	SERVICE	The service associated with the event.
X'0108'	TOK_FMT	The format of the token.
X'0109'	KEY_SEC	Key security.
X'010A'	KEY_ALG	Key algorithm.
X'010B'	KEY_TYPE	Key type. Applies to variable-length CCA tokens only.
X'010C'	KEY_CV	Key control vector. Applies to fixed-length DES CCA tokens only.
X'010D'	KEY_USAGE_CKDS	Key usage fields. Applies to variable-length CCA tokens only.
X'010E'	KEY_LEN	The length of the key (in bits). Applies to fixed-length CCA tokens only.
X'010F'	KEY_CP	Key crypto period.
X'0118'	KEY_TIV	A key token identification value. Applies to fixed-length CCA tokens only.
X'0119'	KEY_COMP_TAG	The key is compliant tagged. Applies to fixed-length CCA tokens only.

CCA Symmetric Key Lifecycle Events

X'10'	Key token added to KDS.
X'11'	Key token updated in KDS.
X'12'	Key token deleted from KDS.
X'13'	Key token archived.
X'14'	Key token restored.
X'15'	Key token metadata changed.
X'17'	Key token pre-activated.
X'18'	Key token activated.
X'19'	Key token deactivated.
X'1B'	Key token exported.
X'20'	Key token generated.
X'21'	Key token imported.

SMF Record Type 82 Subtype 40

CCA Symmetric Key Lifecycle Event

Subtype=0028 CCA Symmetric Key	y Lifecycle Event	
Written for lifecycle events (related to symmetric CCA to	okens
25 Jul 2017 20:12:50.09		
TME 006F09D1 DTE 011	7206F SID SP21 SSI	. 00000000 STY 0028
KEV Key Generated		
SRV CSFKGN		
TOKFMT Fixed		
KALG AES		
KSEC Wrapped by MK		
KLEN 256		
	ICSF Server Identity	End User Identity
	USRI SYSTASK	USRI EYSHA
KFP 010105AE36E9	GRPN SYS1	GRPN SYS1
ENCZ 'AE36E9'×	JBN CSFEPC1	TRM LOCALC11
	RST 13:39:45.82	JBN EYSHA
	RSD 25 Jul 2017	RST 18:48:59.40

SUID.. 4040404040404040

RSD	25	Jul	2017
SUID	404	0404	4040404040

How do you control key usage?

System Authorization Facility (SAF) Policies

- The CSFKEYS class controls access to cryptographic keys in the ICSF Key Data Sets (CKDS and PKDS) and enables/disables the use of protected keys.
 - The **SYMCPACFWRAP** field of the ICSF segment enables you to specify whether ICSF can rewrap the encrypted key using the CPACF wrapping key.
 - The **SYMCPACFRET** field of the ICSF segment enables you to specify whether ICSF can return the protected-key form of the CCA token to a caller.
- The CSF.* resources in the XFACILIT class define rules for the user of encrypted key tokens that are stored in the CKDS and PKDS.

Control Vectors

A control vector ensures that an operational key can only be used in cryptographic operations for which it is intended.

For example, the control vector for a DATA key ensures that such a key can be used only in the data encryption and decryption functions.

Control vectors are only supported for fixed-length DES CCA key tokens.

Fixed-length AES CCA key tokens have a zeroed control vector. These keys can only be created as DATA keys to be used for data encryption and decryption. There are no variants.

Note: Variable-length symmetric key tokens provide keymanagement fields (*kmf*) and key-usage fields (*kuf*) to control key usage.

Is there a way to audit key usage?

Key usage auditing must be explicitly enabled in the ICSF Installation Options Data Set (IODS) or using the SETICSF OPT operator commands.

ICSF IODS Option	SMF Record Type
AUDITKEYUSGCKDS(TOKEN(YES),LABEL(YES),INTERVAL(n))	Type 82 Subtype 44
AUDITKEYUSGPKDS(TOKEN(YES),LABEL(YES),INTERVAL(n))	Type 82 Subtype 45
AUDITPKCS11USG(TOKENOBJ(YES),SESSIONOBJ(YES),NOKEY(YES), INTERVAL(n))	Type 82 Subtype 46 & Type 82 Subtype 47
Note: The INTERVAL in which the key usage data is aggregated can be from 1 to 24 hours in the Installation Options Data Set. However, it can be from 1 second to 24 hours using the SETICSF OPT operator command.	Let's take a look!
M Client Center Montpellier - September 19-22, 2017	TEN

SMF Record Type 82 Subtype 44

CCA Symmetric Key Usage Event

Тад	Name	Description				
X'0101'	KDS_LABEL	The label in the KDS				
X'0103'	KEY_NAME	The key name from the token. Applies to variable-length CCA tokens only.				
X'0105' KEY_FPRINT (One or more key fingerprints.				
X'0106'	SERVICE	The service associated with the event.				
X'0108'	TOK_FMT	The format of the token.				
X'0109'	KEY_SEC	Key security.				
X'010A'	KEY_ALG	Key algorithm.				
X'010B'	KEY_TYPE	Key type. Applies to variable-length CCA tokens only.				
X'010C'	KEY_CV	Key control vector. Applies to fixed-length DES CCA tokens only.				
X'010D'	KEY_USAGE_CKDS	Key usage fields. Applies to variable-length CCA tokens only.				
X'010E'	KEY_LEN	The length of the key (in bits). Applies to fixed-length CCA tokens only.				
X'0113'	START_TOD	Start time of the interval in STCKE format.				
X'0114'	END_TOD	End time of the interval in STCKE format.				
X'0115' USG_COUNT		Number of usages accounted for in this record				
X'0116'	KEY_OLD	The key is internal, but not wrapped under the current master key.				
X'0118'	KEY_TIV	A key token identification value. Applies to fixed-length CCA tokens only.				
X'0119'	KEY_COMP_TAG	The key is compliant tagged. Applies to fixed-length CCA tokens only.				

Remember that fixedlength AES CCA tokens always have a zeroed control vector so neither of these fields apply.

SMF Record Type 82 Subtype 44

CCA Symmetric Key Usage Event

```
Subtype=002C CCA Symmetric Key Usage Event
Written for usage events related to symmetric CCA tokens
25 Jul 2017 21:44:22.97
   TME... 00776B79 DTE... 0117206F SID... SP21 SSI... 00000000 STY... 002C
   STOD.. 07/26/2017 01:44:21.974598
   ETOD.. 07/26/2017 01:44:22.974680
   SRV... CSFKRR2
   USGC.. 2
   LBL... DATASET.EYSHA.ICSF.ENCRYPT.ME.ENCRKEY.00000001
                                                                                  DATA
   TOKFMT Fixed
   KALG.. AES
   KSEC.. Wrapped by MK
   KLEN., 256
                                          An ICSF audit section which is supported with SMF
                                           Record Type 82 Subtype 40 and higher may contain
   TIV... 'AFBEB90C'x
                                           additional audit information. For example, the end
   KFP... 010105502B47
                                          user RACF user id associated that used the key.
           ENCZ.. '502B47'x
End User Identity...
   USRI.. DATAOWN
```

SMF Record Type 82 Subtype 28

High Performance Encrypted Key

Name	Description			
SMF82HPSK_FLAGS	High performance encrypted key flags			
	Bit 0: Rewrapping not permitted for this symmetric key Bit 1: Rewrapping was permitted for this symmetric key. Bit 2: The list of labels is incomplete. Bit 3: The key identifier was supplied as a key token, not as a label in the CKDS.			
SMF82HPSK_FUNCTION	Name of the service that issues this SMF record. The name is in the form of CSFzzzz.			
SMF82HPSK_SYM_LABEL_CNT	Number of SYM labels present in this record.			
The following is repeated SMF82HPSK_SYM_LABEL_CNT number of times				
SMF82HPSK_SYM_LABELS	The format of the token.			

IBM Client Center Montpellier - September 19-22, 2017

30

SMF Record Type 82 Subtype 28

High Performance Encrypted Key

Is there a way to audit crypto engine usage?

ICSF will provide crypto usage tracking of applications and components that invoke ICSF services in HCR77C1. Crypto usage tracking can be enabled/disabled at ICSF initialization using the **Installation Options Data Set (IODS)** or dynamically using **SETICSF OPT operator commands**.

ICSF IODS Option	SMF Record Type
STATS(ENG,SRV,ALG)	Type 82 Subtype 31

ENG: Tracks crypto engine usage. When enabled, ICSF tracks the usage of Crypto Express Adapters, Regional Cryptographic Servers, CPACF and Software.

SRV: Tracks crypto service usage. When enabled, ICSF tracks the usage of ICSF callable services and User Defined Extensions (UDX). **ALG:** Tracks crypto algorithm usage. When enabled, ICSF tracks the usage of crypto algorithms that are referenced in cryptographic operations.

Crypto usage data collection is synchronized to the SMF recording interval. Your SMFPRMxx member must contain:

- The collection interval (INTVAL)
- The synchronization value (SYNCVAL)
- The Crypto Usage Statistics Subtype 31 for ICSF Type 82 records (TYPE)

IBM Client Center Montpellier - September 19-22, 2017

32

SMF Record Type 82 Subtype 31 (Fixed Header)

Crypto Usage Statistics

Name	Description
SMF82STAT_VER	Version number
SMF82STAT_DOMAIN	Current domain index
SMF82STAT_LEN	Length of this header
SMF82STAT_TRIPL_OFF	Offset from SMF82STAT into triplet section
SMF82STAT_TRIPL_LEN	Length of triplet section
SMF82STAT_D_INTVAL_STARTE	Start time (TOD clock) of the SMF interval in STCKE format.
SMF82STAT_D_INTVAL_ENDE	End time (TOD clock) of the SMF records in STCKE format.
SMF82STAT_D_USERID_AS	The HOME address space user id
SMF82STAT_D_USERID_TK	The task level user id (if present)
SMF82STAT_D_JOBID	The job id for the HOME address space.
SMF82STAT_D_JOBNAME	The job name for the HOME address space.
SMF82STAT_D_JOBNAME2	The job name of the SECONDARY address space (ICSF caller).
SMF82STAT_D_PLEXNAME	The Sysplex member name.

SMF Record Type 82 Subtype 31 (Triplets)

Crypto Usage Statistics

Tag	Name	Description
X'0201'	SMF82STAT_ENG_CARD	Identifier, serial number and usage count
X'0202'	SMF82STAT_ENG_RCS	Identifier, serial number and usage count
X'0203'	SMF82STAT_ENG_CPACF	Usage count
X'0204'	SMF82STAT_ENG_SOFTW	Usage count
X'0205'	SMF82STAT_SRV	Service name and usage count
X'0206'	SMF82STAT_SRVUDX	UDX service name and usage count
X'0207'	SMF82STAT_ALG	Algorithm name and usage count

Crypto usage statistics are intended to help you determine:

- Which jobs/tasks are using the various crypto engines
- Which crypto adapter types are getting the most requests
- If any crypto requests are being handled in software
- What are the peak periods of crypto utilization
- Which ICSF services are being invoked by other z/OS components
- Which jobs / tasks are using out-of-date algorithms or key sizes

Use the STATSFILTERS(NOTKUSERID) installation options data set keyword to reduce the number of SMF records in high transaction environments.

SMF Record Type 82 Subtype 31

Crypto Usage Statistics

```
Subtype=001F Crypto Usage Statistics
Written periodically to record crypto usage counts
25 Jul 2017 21:44:30.00
  TME... 00776E38 DTE... 0117206F SID... SP21 SSI... 00000000 STY... 001F
   INTVAL_START.. 07/26/2017 01:43:30.005793
   INTVAL_END.... 07/26/2017 01:44:30.004008
  USERID_AS.... DATAOWN
  USERID_TK....
   JOBID..... T0000060
  JOBNAME.... DATAOWN
   JOBNAME2....
  PLEXNAME..... LOCAL
  DOMAIN..... 0
  ENG...CARD...5C47/99EA6076... 1
  ENG...CPACF... 1
  ALG... AES256.... 1
  SRV...2
```

What IBM tools are available to manage keys?

Integrated Cryptographic Services Facility (ICSF)

ICSF provides callable services and utilities that generate, store, and manage keys, and also perform cryptographic operations.

Supports Master Keys and Operational Keys

Enterprise Key Management Foundation (EKMF)

EKMF securely manages keys and certificates for cryptographic coprocessors, hardware security modules (HSM), cryptographic software, ATMs, and point of sale terminals.

Supports Operational Keys

Trusted Key Entry (TKE) Workstation

TKE securely manages multiple Cryptographic Coprocessors and keys on various generations of IBM Z from a single point of control.

36

Supports Master Keys and Operational Keys

Let's take a closer look

Security Key Lifecycle Manager (SKLM)

SKLM v2.7 provides key storage, key serving and key lifecycle management for IBM and non-IBM storage solutions using the OASIS Key Management Interoperability Protocol (KMIP) and IBM Proprietary Protocol (IPP).

Supports Operational Keys for Self Encrypting Devices (SEDs)

z/OS Integrated Cryptographic Services Facility (ICSF)

ICSF works with the hardware cryptographic features and the Security Server (RACF element) to provide secure, high-speed cryptographic services in the z/OS environment.

- ICSF provides the application programming interfaces by which applications request cryptographic services.
- ICSF is the default means by which the secure cryptographic features are loaded with master key values, allowing the hardware features to be used by applications.
- ICSF callable services and programs can be used to generate, store, and manage keys that are used in the cryptographic functions.

IBM Client Center Montpellier - September 19-22, 2017

37

Key Management Features for z/OS ICSF

ISPF Panels

- Generate, load and view Master Keys
 - Panel 1: COPROCESSOR MGMT
 - Panel 5: UTILITIES
- Manage key records in the CKDS
 - Panel 5.5: CKDS KEYS (i.e. CKDS Browser)
 - Panel 5.5.7 can generate a secure AES DATA key and store in the CKDS
- Manage key records in the PKDS
 - Panel 5.6: PKDS KEYS
- Manage PKCS #11 tokens in the TKDS
 - Panel 5.7: PKCS11 TOKEN (i.e. TKDS Browser)
- Generate keys in bulk
 - Panel 8: KGUP Key Generator Utility Program

Application Programming Interfaces

- Create symmetric and asymmetric keys
 - CCA Symmetric Keys: CSNBKTB/2 (build key token), CSNBKGN/2 (generate key token), CSNBRNG/L (generate random numbers)
 - CCA Asymmetric Keys: CSNDPKB (build PKA key token), CSNDPKG (generate PKA key token)
 - PKCS #11 Keys: CSFPGSK (generate PKCS #11 secret key), CSFPGKP (generate PKCS #11 key pair)
- Manage Key Records in ICSF Key Data Sets
 - CKDS: CSNBKRC/2 (create), CSNBKRW/2 (write), CSNBKRR/2 (read), CSNBKRD (delete)
 - PKDS: CSNDKRC (create), CSNDKRW (write), CSNDKRR/2 (read), CSNDKRD (delete)
 - TKDS: CSFPTRC (create, copy), CSFPTRL (list), CSFPTRD (delete), CSFPGAV (get attributes), CSFPSAV (set attributes)
 - General KDS & Metadata: CSFKDSL (kds list), CSFKDMW (metadata write), CSFKDMR (metadata read)

IBM Trusted Key Entry (TKE) Workstation

TKE is an appliance that simplifies the management of IBM Z Host Cryptographic Modules running in Common Cryptographic Architecture (CCA) or IBM Enterprise PKCS#11 (EP11) mode, using compliant level management techniques.

Key Management Features for TKE

Features for Managing Module Scoped and Domain Scoped Administrative settings on Host Cryptographic Modules

 Featuring: <u>Secure, simplified</u> administrative management of multiple domain host cryptographic modules in complex configurations

Secure, hardware-based Master Key and Operational key management

 Featuring: <u>Compliant level</u> hardware-based key management with proper encryption strengths, dual controls, and security relevant auditing

Highly secure and efficient movement of administrative settings from one Host Cryptographic Module to another

 Providing: <u>Secure, fast, and accurate</u> deployment of new crypto modules on production, test, or disaster recovery systems Popular Features

- Domain Grouping to broadcast a command to a set of domains
- Secure Loading of CCA Master Keys (MKs)
- Manage domains higher than 16
- Migration Wizards
- Enable/disable Access Control Points (ACPs)
- Loading MKs for inactive LPARs
- Loading PIN decimalization tables
- Loading EP11 Master Key

IBM Client Center Montpellier - September 19-22, 2017

40

IBM Enterprise Key Management Foundation (EKMF)

Key Management Features for EKMF

- Basic key management functions include:
 - key generation
 - key import
 - key export
 - key print
 - key administration
- Key management functions are controlled by key templates and key policies. Key templates:
 - control functions for a key
 - predefine key attributes
- When generating or entering a key, the key is automatically distributed to the servers specified in the key template.
 - ICSF Key Data Sets
 - RACF Key Rings (i.e. SKLM, z/OS PKI)
 - ... and more

	k	ley Templa	ate Editor					X
Title:*	DES-PLAY 1		Number:	DE	S-PLAY-1			
Version:		11	Status:*	Ac	tive			•
Description:	Template for test purposes							Ĵ
Key Creation Valu	Jes:							
Key Label:	<hierarchy>TEST.<bin>.<seqno></seqno></bin></hierarchy>							JF[H]
Key State:	Active	•	Algorithm:	[DES			v
Key Size:*	DOUBLE	•	Key Check Met	:hod: 🛾 🛾	B: ENC-ZER)		•
Origins:*	Generate	•	Comment:					
Active Date:	Today	J ^[10]	Expiry Date:	Т	Foday + 2y			JF[H]
Expiry Date Start:	•••	f [8])					
Allow keys of equal	left and right halves: 🔾 Yes 💿 No							
Assign Institution Id	: 🔾 Yes 🖲 No							
Key Instances:								
Application	Key Store Label		K	ey Zone	e Key	Store Type	Кеу Туре	Install
ISSUER	Same as Key Label		1.	Issuing	g ICSF		OPINENC	Yes
Export Key Instan	ices:							
Export key	Export Key Label			Key De	estination	Preferred K	ey Letter	
Yes	Same as Key Label			Print		Binary / TR-3	31	
							🖌 Save	🗙 Cancel

IBM Security Key Lifecycle Manager (SKLM)

IBM Security Key Lifecycle Manager provides centralized key management for self-encrypting devices.

Self-encrypting devices protect data if you lose control of the device.

- Data on the truck traveling between datacenters
- Data at rest within the datacenter
- Decommissioned storage devices

Key Management Features for SKLM

SKLM for Distributed Systems

SKLM v2.7 supports the IBM Proprietary Protocol (IPP) and industry-standard Key Management Interoperability Protocol (KMIP) for key distribution with storage devices.

Features include:

- Key generation, import and export
- Secure storage of key material
- Automatic assignment and rotation of keys
- Key serving at the time of use

SKLM for z/OS

SKLM for z/OS supports the IBM Proprietary Protocol (IPP) for key distribution with storage devices.

SKLM for z/OS can use ICSF through JCE hwkeytool or RACF GENCERT commands to push RSA key pairs to the ICSF PKDS and AES keys to the ICSF CKDS.

Features include:

- Key generation, import and export
- Secure storage of key material
- Key serving at the time of use

Note: SKLM can <u>not</u> be used to manage z/OS data set encryption keys.

Key Management Activities SEDs = Self-encrypting devices

	Activity	ICSF	ТКЕ	EKMF	SKLM
Authorization Tasks	SAF Authorization (CSFKEYS and CSFSERV)	YES	YES	YES	SKLM for z/OS
	Key Auditing (master keys, operational keys)	YES	YES	OPERATIONAL KEYS	YES
Master Key Tasks	Master Key Entry	YES, PANELS	YES, SECURE	NO	NO
	Master Key Change	YES, PANELS	YES, SECURE	NO	NO
	Master Key Zeroize	NO, HMC / SE	YES	NO	NO
Basic KDS Tasks	Operational Key Record Creation (and naming)	YES	NO	YES, GUI-BASED	SEDs
	Operational Key Record Update	YES	NO	YES, GUI-BASED	SEDs
	Operational Key Record Deletion	YES	NO	YES, GUI-BASED	SEDs
Basic Key Tasks	Operational Key Generation	YES	SMALL SCALE	YES, GUI-BASED	SEDs
	Operational Key Import	YES	SMALL SCALE	YES, GUI-BASED	SEDs
	Operational Key Export	YES	NO	YES, GUI-BASED	SEDs
KDS Metadata Tasks	Operational Key Archival	YES	NO	NON-KDS,GUI-BASED	NO
	Operational Key Restore	YES	NO	NON-KDS,GUI-BASED	NO
	Operational Key Expiration	YES	NO	NON-KDS,GUI-BASED	NO
Maintenance Tasks	Rekeying encrypted data (operational keys)	YES	NO	NO	SEDs
Recovery Tasks	Disaster Recovery (master keys, operational keys)	YES	YES	OPERATIONAL KEYS	SEDs

Additional Resources

IBM Crypto Education Community <u>https://www.ibm.com/developerworks/community/groups/community/crypto</u>

Master Key Management Materials https://ibm.biz/BdiKRz

